
Journal of Sound and Vibration (1997) 206(3), 425–434

   

EXACT SOLUTIONS FOR THE ANALYSIS OF A NON-CONSERVATIVE BEAM
SYSTEM WITH GENERAL NON-HOMOGENEOUS BOUNDARY CONDITIONS

S. M. L

Mechanical Engineering Department, Kung Shan Institute of Technology, Tainan,
Taiwan 710, Republic of China

(Received 28 May 1996, and in final form 26 March 1997)

1. 

Many physical problems such as diffusion, heat conduction, vibration, wave propagation
etc., can be described by a one-dimensional, nth order, linear partial differential equation.
So far, a few closed form solutions of some special partial equations have been obtained.
By taking the Laplace transform with respect to time, the partial differential equation
becomes a one-dimensional, nth order, linear ordinary differential equation. Yang and Tan
[1] obtained the closed form matrix general solution of the nth order ordinary differential
equation by transforming the equation into a first order system and taking some
appropriate procedures. By taking the inverse Laplace transform, the solution in time
domain will be obtained. However, the solution seems to be complicated. Stakgold [2]
discussed some properties of the Green’s function of boundary value problems for a nth
order ordinary differential equation. But no simpler general solution of a one-dimensional,
nth order, linear ordinary differential equation with variable coefficients has been obtained.

The vibration of a uniform Bernoulli–Euler beam with classical time dependent
boundary conditions can be solved by using the method of Laplace transform [3, 4] and
the method of Mindlin–Goodman [5, 6]. In the Mindlin–Goodman method, a procedure
of change of dependent variable together with four shifting polynomials of the fifth degree
are introduced. By properly selecting these shifting polynomial functions, the
non-homogeneous boundary conditions are transformed into homogeneous ones.
Consequently, the method of separation of variables was used to solve the problem.
However, the method requires exact eigensolutions, which may be difficult to obtain
particularly for some non-conservative system. Lee and Lin [7] study the dynamic response
of a non-uniform Bernoulli–Euler beam with time dependent elastic boundary conditions
by generalizing the method of Mindlin–Goodman [5] and utilizing the general solutions
of general elastically restrained non-uniform beams given by Lee and Kuo [8]. The general
solutions by Lee and Kuo are restricted to a conservative system only. For the uniform
Timoshenko beams, the vibration of beams with classical time dependent boundary
conditions was solved by Herrmann by adopting the method of Mindlin–Goodman [9].
In general, the study of non-conservative instability of beams was restricted to determining
the critical loads and the instability mechanism by using the frequency equation [10]. There
is still no study on the vibrational analysis of non-conservative system of a beam with time
dependent elastic boundary conditions.

The purpose of this paper is to find a simple general solution and the Green’s function
of a boundary value problem with a nth order governing differential equation with variable
coefficients. The general solution presented here is simpler than that given by Yang and
Tan [1]. The general solution of the boundary value system is expressed in terms of n
linearly independent homogeneous solutions. It is the generalization of that given by
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Stakgold [2]. The proposed method can be applied to both the boundary value problems
and the initial value problems. With the proposed method, the limitation of the method
given by Lee and Kuo [8] to a self-adjoint system is eliminated. Without transforming the
non-homogeneous boundary conditions into the homogeneous ones by using the shifting
functions, the general solution of a boundary value problem with time-dependent
boundary conditions can be obtained directly [7]. A systematic theoretical development of
the static and dynamic analysis of a non-uniform Bernoulli–Euler beam subjected to a
partial tangential follower force, with non-homogeneous elastic boundary conditions, are
presented. If the coefficients of the fourth order governing differential equation can be
expressed in polynomial form, the closed form homogeneous solution can be obtained [11].
If the closed form homogeneous solutions are not available, then approximate solutions
can be obtained through a simple and efficient numerical method given by Lee and Lin
[12]. The suitability of the method to determine the flutter buckling loads of a
non-conservative system through finding roots of the characteristic equation is discussed.

2.  

In general, a nth order ordinary differential equation with variable coefficients can be
written as

qn (x)
dnV
dxn + qn−1(x)

dn−1V
dxn−1 + · · ·+ q1(x)

dV
dx

+ q0(x)V= p(x), x$(0, L) (1)

where the coefficients {qi (x)} are variable on the closure domain [0, L], and the leading
coefficient qn (x) does not vanish anywhere on the closure domain. Letting the Green’s
function be

Ez (x)=Gz (x)H(x− z), (2)

where H(x− z) is the Heaviside function and Gz (x) satisfies the following conditions

djGz /dxj=x= z =0, j=0, 1, 2, . . . , n−2, (3)

dn−1Gz /dxn−1=x= z =1/qn (z), (4)

then the Green’s function satisfies, in the distributional sense,

qn (x)
dnEz

dxn + qn−1(x)
dn−1Ez

dxn−1 + · · ·+ q1(x)
dEz

dx
+ q0(x)Ez = d(x− z). (5)

The general solution V(x) of equation (1) can be expressed in terms of a particular
solution Vp (x) and the n linearly independent homogeneous solutions Vi (x) of equation
(1)

V(x)=Vp (x)+ s
n

i=1

CiVi (x), (6)

where {Ci} are the constants to be determined. The particular solution can be obtained

Vp (x)=g
L

0

Ez (x)p(z) dz. (7)

Letting the unknown function Gz (x) be

Gz (x)= s
n

i=1

oi (z)Vi (x), (8)
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and substituting it into equations (3–4), the following coefficients {oi} can be obtained

o1(z) V1(z) V2(z) · · · Vn−1(z) Vn (z)
−1

0

o2(z) V'1 (z) V'2 (z) · · · V'n−1(z) V'n (z) 0
··· = ···

···
···

···
···

··· .

on−1(z) V(n−2)
1 (z) V(n−2)

2 (z) · · · V(n−2)
n−1 (z) V(n−2)

n (z) 0

on (z) V(n−1)
1 (z) V(n−1)

2 (z) · · · V(n−1)
n−1 (z) V(n−1)

n (z)
1

qn (z)

Then the general solution V(x) becomes

V(x)= s
n

i=1 $g
x

0

oi (z)p(z) dz+Ci%Vi (x). (10)

Substituting the general solution into the specified boundary conditions, the coefficients
{Ci} can be obtained. It should be noted that the proposed method can be applied to both
boundary value problems and initial value problems. If the order of the differential
equation (1) is four, the corresponding general solution (10) can be applied to the static
and dynamic analysis of beams.

3. -  

3.1. Static Analysis
Consider the static deflection of a symmetric non-uniform Bernoulli–Euler beam with

non-homogeneous elastic boundary conditions, resting on a non-uniform Winkler
foundation K(x) and subjected to any transverse force and partial tangential follower
force, as shown in Figure 1.

In terms of the following dimensionless quantities,

b(j)=E(x)I(x)/E(0)I(0), f1 =F1, f2 =F2/L, f3 =F3, f4 =F4/L,

f*1 =F*1 L/E(0)I(0), f*2 =F*2 L2/E(0)I(0), f*3 =F*3 L/E(0)I(0),

f*4 =F*4 L2/E(0)I(0), k(j)=K(x)L4/E(0)I(0), m(j)= r(x)A(x)/r(0)A(0),
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Figure 1. Geometry and co-ordinate system of a general elastically restrained non-uniform beam with general
elastic non-homogeneous boundary conditions, subjected to the transverse force and the partial tangential
follower force.
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n(j)=N(x)L2/E(0)I(0), p(j)=P(x)L3/E(0)I(0), w(j)=W(x)/L, j= x/L,

b1 =KuLL3/E(0)I(0), b2 =KTLL/E(0)I(0), b3 =KuRL3/E(0)I(0),

b4 =KTRL/E(0)I(0), (11)

the governing differential equation is

d2

dj2 $b(j)
d2w
dj2%+ n(j)

d2w
dj2 + k(j)w= p(j), j$(0, 1) (12)

which is a non-conservative operator. The associated boundary conditions are at
j=0:

g12 d2w/dj2 − g11 1w/1j= a1, g22 d/dj(b d2w/dj2)+ g21w= a2, (13, 14)

at j=1:

g32b d2w/dj2 + g31 dw/dj= a3, g42 $ d
dj 0b d2w

dj21+(1− h)n
dw
dj%− g41w= a4,

(15, 16)

where

gi1 = bi /(1+ bi ), gi2 =1/(1+ bi ), i=1, 2, 3, 4, a1 =−g11f1 − g12f*1 ,

a2 = g21f2 + g22f*2 , a3 = g31f3 + g32f*3 , a4 =−g41f4 − g42f*4 , (17)

in which W(x) is the flexural displacement. N(x) is a tangential follower force, equal to
N(L)+ fL

x g(r) dr in which g(x) is a distributed tangential follower force. h is the tangential
coefficient, E(x), I(x) and A(x) denote Young’s modulus, moment of inertia and area per
unit length, respectively, r(x) is the density per unit volume, P(x) is the transverse force.
F1, F2, F*1 and F*2 and F3, F4, F*3 and F*4 are the slope of the base, the displacement of the
base, the external moment and the shear force excitations at the left end and the right end
of the beam, respectively. KTL and KTR are the translational spring constants at x=0 and
x=L, respectively. KuL and KuR are the rotational spring constants at x=0 and x=L,
respectively.

Letting the homogeneous solutions {V1, V2, V3, V4} of equation (12) satisfy the following
normalized condition

V1(0) V2(0) V3(0) V4(0) 1 0 0 0

V'1 (0) V'2 (0) V'3 (0) V'4 (0) 0 1 0 0
G
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V01 (0) V02 (0) V03 (0) V04 (0)

=
0 0 1 0

(18)

V11 (0) V12 (0) V13 (0) V14 (0) 0 0 0 1

and substituting the corresponding general solution (10) into the boundary conditions
(13–16), the associated coefficients can be obtained

Ci =
1
x

s
4

j=1

aija*j , i=1, 2, 3, 4, (19)
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where

x= g12[g22(G1H2 −G2H1)+ g21(G2H4 −G4H2)]+ g11{g22[G1H3 −G3H1 + b'(0)

× (G4H1 −G1H4)]+ g21(G3H4 −G4H3)},

a11 = g22b'(0)(G2H1 −G1H2)+ g21(G3H2 −G2H3),

a12 = g12(G1H2 −G2H1)+ g11(G1H3 −G3H1),

a13 = g11[g22b'(0)H1 − g21H3]− g12g21H2, a14 = g12g21G2 − g11[g22b'(0)G1 − g21G3],

a21 = g22(G1H2 −G2H1)+ g21(G2H4 −G4H2), a22 = g11(G4H1 −G1H4),

a23 = g11(g21H4 − g22H1), a24 = g11(g22G1 − g21G4),

a31 = g22(G3H1 −G1H3)+ g21(G4H3 −G3H4)− g22b'(0)(G4H1 −G1H4),

a32 = g12(G4H1 −G1H4), a33 = g12(g21H4 − g22H1), a34 = g12(g22G1 − g21G4),

a41 = g22[b'(0)(G4H2 −G2H4)− (G3H2 −G2H3)],

a42 = g12(G2H4 −G4H2)+ g11(G3H4 −G4H3),

a43 = g22[g11H3 + g12H2 − g11b'(0)H4], a44 =−g22[g11G2 + g12G2 − g11b'(0)G4],

a*1 = a1, a*2 = a2 −2g22o'1 (0)f '(0), a*3 = a3 − g32b(1)C
 − g31B
 ,

a*4 = a4 − g42[b(1)D
 + b'(1)C
 (1− h)n(1)B
 ]+ g41A
 , (20)

in which

Gi = g32b(1)V01 (1)+ g31V'i (1),

Hi = g42[b(1)V0'i (1)+ b'(1)V0i (1)+ (1− h)n(1)V'i (1)]− g41Vi (1),

A
 = s
4

i=1 g
1

0

oi (z)f(z) dzVi (1), B
 = s
4

i=1 g
1

0

oi (z)f(z) dzV'i (1),

C
 = s
4

i=1 $oi (1)f '(1)Vi (1)+g
1

0

oi (z)f(z) dzV0i (1)%,

D
 = s
4

i=1 6[2o'i (1)f '(1)+ oi (1)f 0(1)]Vi (1)+3oi (1)f '(1)V'i (1)+g
1

0

oi (z)f(z) dzV0'i (1)7. (21)

It has been shown that if the coefficients of the differential equation are in polynomial
forms, then the closed form homogeneous solutions can be obtained. Consequently, the
closed form solution for the system is obtained [11]. If the closed form homogeneous
solutions are not available, then approximate homogeneous solutions can be obtained
through a simple and efficient numerical method [12].

3.2. Dynamic Analysis
The dimensionless governing equation for dynamic response w(j, t) of a non-uniform

Bernoulli–Euler beam with time-dependent elastic boundary conditions, as specified in
section 3.1, is

12

1j2 $b(j)
12w
1j2%+ n(j)

12w
1j2 + k(j)w+m(j)

12w(j, t)
1t2 = p(j, t), (22)
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where m(j) and p(j, t) are the dimensionless mass per unit length of the beam and an
arbitrary dimensionless transverse excitation force, respectively. t is the dimensionless time
variable. The associated boundary conditions are at j=0:

12w(j, t)/1j2 − b1 1w(j, t)/1j=−b1f1(t)− f*1 (t), (23)

1/1j (b(j) 12w(j, t)/1j2)+ b2w(j, t)= b2f2(t)+ f*2 (t), (24)

at j=1:

b(j) 12w(j, t)/1j2 + b3 1w(j, t)/1j= b3f3(t)+ f*3 (t), (25)

1

1j 0b(j)
12w(j, t)

1j2 1+(1− h)n(1)
1w(j, t)

1j
− b4w(j, t)=−b4f4(t)− f*4 (t), (26)

in terms of the dimensionless quantities (16) and

t= t/L2zE(0)I(0)/r(0)A(0), (27)

where t is the time variable. The associated initial conditions are

w(j, 0)=w0(j), 1w(j, 0)/1t= ẇ0(j), (28)

where w0 and ẇ0 are two prescribed initial functions.
After taking the Laplace transform with respect to the dimensionless time variable t,

the following ordinary differential equation (22) becomes

d2

dj2 $b(j)
d2w̄
dj2%+ n(j)

d2w̄
dj2 + [k(j)+ s2m(j)]w̄ = p*(j, s), (29)

and the associated boundary conditions equations (28–31) become at j=0:

g12 d2w̄/dj2 − g11 dw̄/dj= ā1, (30)

g22 (d/dj)(b d2w̄/dj2)+ g21w̄= ā2, (31)

at j=1:

g32b
d2w̄
dj2 + g31

dw̄
dj

= ā3, g42 $ d
dj 0b d2w̄

dj21+(1− h)n
dw̄
dj%− g41w̄= ā4, (32, 33)

where

p*(j, s)= p̄(j, s)+m(j)[sw0(j)+ ẇ0(j)], w̄(j, s)=g
a

0

w(j, t) e−st dt,

ā1 =−g11f�1(s)− g12f�*1 (s), ā2 = g21f�2(s)+ g22f�*2 (s), ā3 = g31f�3(s)+ g32f�*3 (s),

ā4 =−g41f�4(s)− g42f�*4 (s), p̄(j, s)=g
a

0

p(j, t) e−st dt,

f�i (s)=g
a

0

fi (t) e−st dt, f�*i (s)=g
a

0

f*i (t) e−st dt, (34)

and s is the Laplace transform parameter. Since equations (29–33) are in the same form
as equations (12–16), the transformed general solution w̄(j, s) and the Green’s function



    431

are the same as those given in section 3.1. By taking the inverse Laplace transform, one
obtains the dynamic response of the system

w(j, t)=
1

2pj g
c+ja

c−ja

w̄(j, s) est ds, j$(0, 1) (35)

where j2 =−1.

4.   

The following examples are given to illustrate the validity and the accuracy of the
analysis.

Example 1: Consider the vibration of a clamped–hinged uniform beam subjected to a
displacement time dependent excitation f4 =0·02t2 at the right end of the beam. For
convenience, one takes the initial conditions as w0(j)= ẇ0(j)=0 and the transverse force
p(j, t)=0. Therefore, f1 = f2 = f3 = f*1 = f*2 = f*3 = f*4 =0. After following the solution
methods given in section 3 and taking the method for the numerical inversion of Laplace
transforms [13], the results are listed in Table 1. The numerical results in the rows with
mark ‘‘*’’ are given by the present analysis and those in the rows with mark ‘‘**’’ are given
by Grant [6]. It is found that the numerical results are very similar.

Example 2: Consider the vibration of a cantilever uniform beam subjected to a harmonic
transverse excitation at the position j0 of the beam and a partial tangential follower force
n0. The applied transverse harmonic force is given as

p(j, t)= g0 sin (vt)d(j− j0). (36)

Since the time dependent excitations on the beam are in harmonic forms, it is not necessary
to use the Laplace transform and inverse Laplace transform while solving the steady state
solution of the dependent variable w(j, t) in equation (22) and the boundary conditions
equations (23–26). The dependent variable w(j, t) can be assumed to take the form

w(j, t)= v(j) sin (vt), (37)

T 1

The dynamic response of clamped–hinged uniform beam subjected to a displacement
excitation at the right end [f1 = f2 = f3 = f*1 = f*2 = f*3 = f*4 = p(j, t)=0, f4 =0·02t2,

w0(j)= ẇ0(j)=0].

t j 0·2 0·4 0·6 0·8 1·0

0·5 * 0·0003 0·0011 0·0023 0·0036 0·0050
** 0·0003 0·0010 0·0021 0·0035 0·0050

1·0 * 0·0011 0·0042 0·0088 0·0142 0·0200
** 0·0011 0·0040 0·0085 0·0140 0·0200

1·5 * 0·0025 0·0094 0·0196 0·0318 0·0450
** 0·0025 0·0093 0·0193 0·0316 0·0450

2·0 * 0·0045 0·0167 0·0347 0·0564 0·0800
** 0·0045 0.0166 0·0346 0·0563 0·0800

2·5 * 0·0070 0·0261 0·0541 0·0881 0·1250
** 0·0070 0·0260 0·0540 0·0880 0·1250

*, present study; **, by Grant [6].
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Figure 2. The amplitudes of steady response at the right end of a uniform cantilever beam subjected to different
harmonic excitations [p(j, t)=0·1 sin (vt)d(j−0·5), the critical flutter load ncr =20·0591, h=1·0: ——,
n0 =20·0391; ––––, n0 =18·3333].

where the coefficient v(j) is to be determined. Substituting w( j, t) into equation (22) and
the boundary conditions equations (23–26), and by utilizing the results given in section
3.1, the exact solution is obtained:

w(j, t)=g
G

G

G

G

F

f

s
4

i=1

[g0oi (j0)+Ci ]Vi (j) sin vt, for je j0,

(38)

s
4

i=1

CiVi (j) sin vt, for jQ j0,

where the coefficients {Ci} are listed in case 2 in the Appendix.
In Figure 2, the vibrational response curves at the tip of the beam are illustrated. It

shows that when the excitation frequencies approach the natural frequencies of the beam,
the response increases rapidly and becomes infinite as the excitation frequencies coincide
with the natural frequencies. If the follower force increases, the first two natural
frequencies will approach each other. Based on the method to determine the critical flutter
loads determined through finding roots of the characteristic equation, when the follower
force increases to the critical value, the first two natural frequencies coincide with each
other. The critical flutter load of the beam is 20·0591. When the follower force is 20·0391
and the excitation frequencies are between the first two natural frequencies, the amplitudes
of dynamic response at the tip of the beam are greater than 5. Then it is not a system with
small deformation. But the system is derived on Bernoulli–Euler beam theory. So, it is
concluded that the instability will occur under some load smaller than that determined
through finding roots of the characteristic equation.

5. 

In this paper, a simple Green’s function for a nth order ordinary differential equation
with variable coefficients is proposed. The Green’s function and the general solution are
expressed in terms of n linearly independent normalized homogeneous solutions of the
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differential equation. It is the generalization of that given by Stakgold. The proposed
method can be applied to both the boundary value problems and the initial value problems.
The static and dynamic analysis of a non-uniform Bernoulli–Euler beam subjected to
partial tangential follower force, with non-homogeneous elastic boundary conditions, are
presented. The general solution is expressed in terms of the four normalized homogeneous
solutions. The general solution can be obtained directly without transforming the
non-homogeneous boundary conditions into the homogeneous ones. If the coefficients of
the fourth order governing differential equation can be expressed in a polynomial form,
the exact solution can be obtained. The instability will occur under a load smaller than
that determined through finding roots of the characteristic equation.
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Case 1: Clamped–Hinged
In this case, b1, b2 and b4 are infinite, b3 is zero, the non-homogeneous terms become

a1 =−f1, a2 = f2, a3 = f*3 , a4 =−f4.
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The coefficients of the general solution are

C1 = (1/b(1)[V04 (1)V3(1)−V4(1)V03 (1)]){a1b(1)[V02 (1)V3(1)−V2(1)V03 (1)]

+ a2b(1)[V03 (1)V1(1)−V3(1)V01 (1)]+ (a3 − b(1)C�)V3(1) + a4A�b(1)V03 (1)},

C2 = (1/b(1)[V04 (1)V3(1)−V4(1)V03 (1)]){a1b(1)[V04 (1)V2(1)−V4(1)V02 (1)]

+ a2b(1)[V01 (1)V4(1)−V1(1)V04 (1)]− (a3 − b(1)C�)V4(1)− a4A�b(1)V04 (1)},

C3 =−a1, C4 = a2.

Case 2: Clamped–Free
In this case, b1 and b2 are infinite, b3 and b4 are zero, the non-homogeneous terms become

a1 =−f1, a2 = f2, a3 = f*3 , a4 =−f*4 .

The coefficients of the general solution are

C1 = (1/[G3H4 −G4H3]){a1(G3H2 −G2H3)+ a2(G1H3 −G3H1)+ [a3 − b(1)C�]H3

+ (a4 − b(1)D�− b'(1)C�)b(1)V03 (1)},

C2 = (1/[G3H4 −G4H3]){a1(G2H4 −G4H2)+ a2(G4H1 −G1H4)+ [a3 − b(1)C�]H4

+ (a4 − b(1)D�− b'(1)C�)b(1)V04 (1)},

C3 =−a1, C4 = a2,

in which

Gi = b(1)V0i (1), Hi = b(1)V1i (1)+ b'(1)V0i (1)+ (1− h)n(1)V'i (1).


